Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Gene Ther ; 19(4): 248-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475896

RESUMO

BACKGROUND: Conventional cell reprogramming involves converting a somatic cell line into induced pluripotent stem cells (iPSC), which subsequently can be re-differentiated to specific somatic cell types. Alternatively, partial cell reprogramming converts somatic cells into other somatic cell types by transient expression of pluripotency genes thus generating intermediates that retain their original cell identity, but are responsive to appropriate cocktails of specific differentiation factors. Additionally, biological rejuvenation by partial cell reprogramming is an emerging avenue of research. OBJECTIVE: Here, we will briefly review the emerging information pointing to partial reprogramming as a suitable strategy to achieve cell reprogramming and rejuvenation, bypassing cell dedifferentiation. METHODS: In this context, regulatable pluripotency gene expression systems are the most widely used at present to implement partial cell reprogramming. For instance, we have constructed a regulatable bidirectional adenovector expressing Green Fluorescent Protein and oct4, sox2, klf4 and c-myc genes (known as the Yamanaka genes or OSKM). RESULTS: Partial cell reprogramming has been used to reprogram fibroblasts to cardiomyocytes, neural progenitors and neural stem cells. Rejuvenation by cyclic partial reprogramming has been achieved both in vivo and in cell culture using transgenic mice and cells expressing the OSKM genes, respectively, controlled by a regulatable promoter. CONCLUSION: Partial reprogramming emerges as a powerful tool for the genesis of iPSC-free induced somatic cells of therapeutic value and for the implementation of in vitro and in vivo rejuvenation keeping cell type identity unchanged.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa , Rejuvenescimento/fisiologia , Animais , Humanos , Fator 4 Semelhante a Kruppel
2.
Behav Brain Res ; 374: 111887, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-30951751

RESUMO

There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 µl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.


Assuntos
Envelhecimento/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Memória Espacial/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Proteína Duplacortina , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Microglia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Memória Espacial/fisiologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/metabolismo
3.
Curr Gene Ther ; 18(4): 240-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30198429

RESUMO

BACKGROUND: Insulin-like Growth Factor1 (IGF1) is a powerful neuroprotective molecule. We have previously shown that short-term hypothalamic IGF1 gene therapy restores tuberoinfundibular dopaminergic neuron function in aging female rats. OBJECTIVE: Our aim was to implement long-term IGF-I gene therapy in pituitary prolactinomas in senile female rats. METHODS: Here, we assessed the long-term effect of IGF1 gene therapy in the hypothalamus of young (4 mo.) and aging (24 mo.) female rats carrying spontaneous pituitary prolactinomas. We constructed and injected a Helper-Dependent (HD) adenovector expressing the gene for rat IGF1 or the reporter red fluorescent protein DsRed. Ninety-one days post vector injection, all rats were sacrificed and their brains and pituitaries fixed. Serum prolactin (PRL), Estrogen (E2) and progesterone (P4), as well as hypothalamic IGF1 content, were measured by RIA. Anterior pituitaries were immunostained with an anti-rat PRL antibody and submitted to morphometric analysis. RESULTS: DsRed expression in the Mediobasal Hypothalamus (MBH) was strong after the treatment in the DsRed group while IGF1 content in the MBH was higher in the IGF1 group. The IGF1 treatment affected neither pituitary weight nor PRL, E2 or P4 serum levels in the young rats. In the old rats, IGF1 gene therapy reduced gland weight as compared with intact counterparts and tended to reduce PRL levels as compared with intact counterparts. The treatment significantly rescued the phenotype of the lactotropic cell population in the senile adenomas. CONCLUSION: We conclude that long-term hypothalamic IGF1 gene therapy is effective to rescue spontaneous prolactinomas in aging female rats.


Assuntos
Terapia Genética , Vetores Genéticos/administração & dosagem , Fator de Crescimento Insulin-Like I/genética , Prolactinoma/terapia , Animais , Feminino , Hipotálamo/metabolismo , Hipotálamo/patologia , Prolactinoma/genética , Prolactinoma/patologia , Ratos , Ratos Sprague-Dawley
4.
Rejuvenation Res ; 21(2): 102-108, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28673122

RESUMO

The aging female rat constitutes an interesting model of spontaneous and progressive age-related dopaminergic dysfunction as it allows assessing new therapeutic strategies for Parkinson's disease. Insulin-like growth factor I (IGF-I) is emerging as a powerful neuroprotective molecule, strongly induced in the central nervous system after different insults. We constructed a helper-dependent recombinant adenoviral vector (HDRAd-IGFI) harboring the gene for rat IGF-I. This was used to implement long-term IGF-I gene therapy in the hypothalamus of aged female rats, which display hypothalamic dopaminergic (DA) dysfunction and, as a consequence, chronic hyperprolactinemia. Rejuvenating long-term IGF-I gene therapy was implemented in young (3 months) and aged (24 months) female rats, which received a single intrahypothalamic injection of 4 × 109 viral particles of either HD-RAd-IGFI or HD-RAd-DsRed (control vector) and were sacrificed 119 days postinjection. In the young animals, neither vector modified serum prolactin (PRL) levels, but in the RAd-IGFI-injected aged rats a nearly full reversion of their hyperprolactinemic status was recorded. Morphometric analysis revealed a significant increase in the total number of tyrosine hydroxylase (TH)-positive cells in the hypothalamus of experimental compared with control aged animals (5874 ± 486 and 3390 ± 498, respectively). Our results indicate that IGF-I gene therapy in aged female rats is highly effective in rejuvenating the hypothalamic DA neuron groups.


Assuntos
Dopamina/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hiperprolactinemia/terapia , Fator de Crescimento Insulin-Like I/genética , Rejuvenescimento , Adenoviridae/genética , Animais , Feminino , Hiperprolactinemia/genética , Hiperprolactinemia/patologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Eur J Neurosci ; 44(4): 2120-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27188415

RESUMO

In rats, learning and memory performance decline during aging, which makes this rodent species a suitable model to evaluate therapeutic strategies of potential value for correcting age-related cognitive deficits. Some of these strategies involve neurotrophic factors like insulin-like growth factor-I (IGF-I), a powerful neuroprotective molecule in the brain. Here, we implemented 18-day long intracerebroventricular (ICV) IGF-I gene therapy in 28 months old Sprague-Dawley female rats, and assessed spatial memory performance in the Barnes maze. We also studied hippocampal morphology using an unbiased stereological approach. Adenovectors expressing the gene for rat IGF-I or the reporter DsRed were used. Cerebrospinal fluid (CSF) samples were taken and IGF-I levels determined by radioimmunoassay. At the end of the study, IGF-I levels in the CSF were significantly higher in the experimental group than in the DsRed controls. After treatment, the IGF-I group showed a significant improvement in spatial memory accuracy as compared with DsRed counterparts. In the dentate gyrus (DG) of the hippocampus, the IGF-I group showed a higher number of immature neurons than the DsRed controls. The treatment increased hippocampal astrocyte branching and reduced their number in the hippocampal stratum radiatum. We conclude that the ependymal route is an effective approach to increase CSF levels of IGF-I and that this strategy improves the accuracy of spatial memory in aging rats. The favorable effect of the treatment on DG neurogenesis and astrocyte branching in the stratum radiatum may contribute to improving memory performance in aging rats.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neurogênese/fisiologia , Memória Espacial/fisiologia , Animais , Cognição/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/terapia , Feminino , Terapia Genética , Hipocampo/citologia , Fator de Crescimento Insulin-Like I/genética , Transtornos da Memória/genética , Transtornos da Memória/terapia , Ratos Sprague-Dawley
6.
Curr Pharm Des ; 20(29): 4690-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588820

RESUMO

Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans.


Assuntos
Fator Tímico Circulante/fisiologia , Fator Tímico Circulante/uso terapêutico , Humanos , Sistema Imunitário/fisiologia , Sistemas Neurossecretores/fisiologia , Timo/fisiologia
7.
Neuroimmunomodulation ; 20(5): 256-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23941809

RESUMO

OBJECTIVES: There is clear evidence on the existence of a thymus-pituitary axis which seems to be particularly important during perinatal life. In particular, the thymic peptide thymulin has been shown to be a relevant player in thymus-pituitary communication. Our goal was to explore the effect of thymulin on circulating prolactin (PRL) levels in different animal models. To this end we undertook a series of experiments in rats and mice, implementing adult thymectomy, thymulin immunoneutralization in normal C57BL/6 mice and neonatal thymulin gene therapy in nude mice. METHODS: We assessed the impact of the above manipulations on PRL secretion and lactotrope morphology by measuring serum PRL by radioimmunoassay and by performing morphometric analysis of the lactotropic cell population in the anterior pituitary gland. RESULTS: Adult thymectomy in female rats slightly increased serum PRL, an effect that was partially reversed by thymulin gene therapy. In mice, thymulin immunoneutralization from birth to age 32 days reduced serum PRL both in males and females. Thymulin immunoneutralization induced a significant (p < 0.01) decrease in lactotrope cell density (CD) and volume density (VD) without changes in cell size (CS). Neonatal thymulin gene therapy markedly increased serum thymulin (p < 0.01) and lactotrope CD, CS and VD in nude mice of both sexes. CONCLUSIONS: Our findings suggest a modulatory effect of thymulin on the lactotrope cell population and on serum PRL, particularly during early life.


Assuntos
Anticorpos/uso terapêutico , Terapia Genética/métodos , Transtornos da Lactação/terapia , Timectomia/métodos , Fator Tímico Circulante/imunologia , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transtornos da Lactação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Hipófise/metabolismo , Hipófise/patologia , Prolactina/sangue , Ratos , Ratos Sprague-Dawley , Fator Tímico Circulante/genética , Fator Tímico Circulante/metabolismo
8.
Life Sci ; 91(5-6): 166-71, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22781709

RESUMO

AIMS: There is clear evidence for the existence of a bi-directional thymus-somatotropic axis and several studies suggest that the thymic peptide thymulin may be involved in this communication. We undertook to assess the impact of serum thymulin immunoneutralization in C57BL/6 mice and that of neonatal thymulin gene therapy (NTGT) in nude mice on body weight (BW) gain and on the histomorphometric profile of the somatotrope population. MAIN METHODS: Immunoneutralization of thymulin was done from postnatal day 1 to 35 by i.p. injections of rabbit anti-thymulin serum (α-FTS) and normal rabbit serum (NRS) in controls. NTGT was implemented in nudes using an adenoviral vector expressing a synthetic gene for thymulin (RAd-FTS). On postnatal day 1, heterozygous (nu/+) and homozygous (nu/nu) pups received a single bilateral i.m. injection either RAd-FTS or RAd-GFP (a control vector expressing green fluorescent protein). BW gain was recorded and at the end of the study the pituitaries were immunostained for growth hormone (GH). Serum GH and thymulin were determined by radioimmunoassay and bioassay, respectively. KEY FINDINGS: Thymulin immunoneutralization induced a significant decrease in BW gain, serum GH and somatotrope cell density as well as an increase in somatotrope cell size. NTGT markedly increased BW gain, serum thymulin (P<0.01) and somatotrope cell and volume density in nu/nu mice. SIGNIFICANCE: Our results suggest that thymulin plays a relevant physiological role on the thymus-somatotropic axis in mice.


Assuntos
Terapia Genética/métodos , Hormônio do Crescimento/sangue , Fator Tímico Circulante/genética , Timo/metabolismo , Adenoviridae/genética , Animais , Contagem de Células , Tamanho Celular , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Coelhos , Radioimunoensaio , Fator Tímico Circulante/imunologia , Fator Tímico Circulante/metabolismo , Aumento de Peso
9.
Endocrinology ; 153(8): 3922-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22700775

RESUMO

Congenitally athymic (nude) female mice show severe ovarian dysgenesis after puberty, which seems to be consequential to a number of neuroendocrine derangements described in these mutants. Thus, considerable evidence suggests that thymulin, a thymic peptide, may be involved in thymus-pituitary communication. In order to clarify the relevance of thymulin for the maturation of the female reproductive system, we assessed at hypothalamic, pituitary, ovarian, and uterine level the preventive action of neonatal thymulin gene therapy (NTGT) on the changes that typically occur after puberty in congenitally athymic female mice. We injected (im) an adenoviral vector harboring a synthetic DNA sequence encoding a biologically active analog of thymulin, methionine-serum thymic factor, in newborn nude mice (which are thymulin deficient) and killed the animals at 70-71 d of age. NTGT in the athymic mice restored the serum thymulin levels. Morphometric analysis revealed that athymic nudes have reduced numbers of brain GnRH neurons and pituitary gonadotropic cells as compared with heterozygous controls. NTGT prevented these changes and also rescued the premature ovarian failure phenotype typically observed in athymic nude mice (marked reduction in the number of antral follicles and corpora lutea, increase in atretic follicles). Serum estrogen, but not progesterone, levels were low in athymic nudes, a reduction that was partially prevented by NTGT. Little to no morphological changes were observed in the endometrium of female nudes. The delay in the age of vaginal opening that occurs in athymic nudes was significantly prevented by NTGT. Our results suggest that thymulin plays a relevant physiologic role in the thymus-hypothalamo-pituitary-gonadal axis.


Assuntos
Terapia Genética/métodos , Ovário/metabolismo , Fator Tímico Circulante/metabolismo , Animais , Animais Recém-Nascidos , Estrogênios/sangue , Feminino , Camundongos , Camundongos Nus , Ovário/patologia , Progesterona/sangue , Fator Tímico Circulante/genética
10.
Neuroimmunomodulation ; 18(5): 350-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21952687

RESUMO

Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. After its discovery and initial characterization in the 1970s, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, a growing core of information, to be reviewed here, points to thymulin as a hypophysiotropic peptide. Additionally, thymulin was shown to possess anti-inflammatory and analgesic properties in the brain. In recent years, a synthetic DNA sequence coding for a biologically active analog of thymulin, metFTS, was constructed and cloned in different adenoviral vectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be downregulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies suggest that thymulin gene therapy may be a suitable therapeutic strategy to prevent some of the endocrine and reproductive alterations that typically appear in congenitally athymic (nude) mice, taken as a suitable model of neuroendocrine and reproductive aging. The present article briefly reviews the literature on the physiology of the thymulin-pituitary axis as well as on the new molecular tools available to exploit the therapeutic potential of thymulin.


Assuntos
Envelhecimento/genética , Terapia Genética , Hipófise/fisiologia , Fator Tímico Circulante/genética , Animais , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Nus , Modelos Animais , Fator Tímico Circulante/metabolismo
11.
Cells Tissues Organs ; 194(1): 67-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21212643

RESUMO

There is evidence of the existence of a bidirectional relationship between the thymus gland and the thyroid axis. Since the thymic peptide thymulin possesses hypophysiotropic activity, we undertook the task of assessing the histomorphometric changes induced by thymulin deficiency on the thyrotrope population of normal mice and the action of neonatal thymulin gene therapy on the thyrotropin (TSH)-cells of nude mice. C57BL/6 mice were subjected to immunoneutralization of circulating thymulin from postnatal day 1 to the end of the study (postnatal day 32) by intraperitoneal injections of rabbit anti-factor thymulin serum (α-FTS) and normal rabbit serum in controls. Also, neonatal thymulin gene therapy was implemented in athymic nude mice using an adenoviral vector expressing a gene for thymulin (RAd-FTS). On postnatal day 1, heterozygous (nu/+) and homozygous (nu/nu) pups received a single bilateral intramuscular (i.m.) injection of either RAd-FTS or RAd-GFP (the latter being the control vector). The pituitaries were immunostained for TSH. Thymulin immunoneutralization severely reduced serum thymulin (p < 0.01). We detected a significant (p < 0.05) decrease in cell size (CS) and volume density (VD) with a nonsignificant decrease in cell density (CD) in C57BL/6 in both males and females. A single neonatal i.m. injection of RAd-FTS markedly increased the circulating levels of serum thymulin in the athymic mice and increased the CD (p < 0.05), CS (p < 0.01) and VD (p < 0.01) of the thyrotrope population in nu/nu mice. Thyroid histology was not affected. Our results suggest a possible modulating effect of thymulin on the thyrotrope population.


Assuntos
Fator Tímico Circulante/genética , Tireotrofos/citologia , Animais , Contagem de Células , Feminino , Terapia Genética , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fator Tímico Circulante/deficiência , Timo/anatomia & histologia , Timo/metabolismo , Tireotrofos/metabolismo
12.
Cells Tissues Organs ; 191(4): 316-25, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19923782

RESUMO

In previous studies, we assessed the effects of intrapituitary injection of a recombinant adenoviral vector (RAd) harboring the cDNA for rat insulin-like growth factor type I (RAd-IGF-I) on the lactotrope and somatotrope populations in estrogen-induced prolactinomas. In the present study, we aimed to confirm these findings and further analyze the effect of transgenic RAd-IGF-I on the other pituitary cell populations in female rats. All animals except the intact group (no estrogen and no stereotaxic injection) received subcutaneous estrogen for 30 days, and the groups which received RAd-IGF-I or RAd expressing green fluorescent protein (control) were additionally treated with the appropriate vectors on experimental day 0. The RAd-IGF-I group showed a significant decrease in serum growth hormone and prolactin levels and lactotrope and somatotrope cell size induced by estrogen treatment. Cell density was not affected by 7 days of IGF-I gene therapy. Estrogen had an inhibitory effect on thyrotrope cell density, whereas with RAd-IGF-I there was a nonsignificant trend towards restoration of cell density, without changes in cell size. RAd-IGF-I treatment decreased corticotrope cell size without changing cell density. Estrogen decreased gonadotrope cell size and density, which was reversed by RAd-IGF-I. We conclude that in estrogen-induced pituitary tumors, IGF-I gene therapy has inhibitory effects on the lactotrope, somatotrope and corticotrope populations, while reversing the effect of estrogen on gonadotropic cells.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Hipófise/patologia , Prolactinoma/patologia , Prolactinoma/terapia , Animais , Feminino , Terapia Genética , Vetores Genéticos , Modelos Animais , Ratos , Ratos Sprague-Dawley
13.
Brain Res Bull ; 80(6): 347-52, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19744546

RESUMO

Dopaminergic neurons of the hypothalamic tuberoinfundibular dopaminergic (TIDA) system exert a tonic inhibitory control on prolactin (PRL) secretion whereas estrogen, known to inhibit TIDA neuron function, has been postulated to be toxic to TIDA neurons when it is chronically high. In order to determine whether estrogen in high doses can cause permanent damage to TIDA function, we submitted young female rats to continue high doses of estrogen administered, either centrally (intrahypothalamic estrogen implants) or peripherally (subcutaneous estrogen implants or weekly intramuscular (i.m.) injections for 7 weeks), subsequently withdrawing the steroid and observing the evolution of lactotrophes, serum PRL and TIDA neurons. Serum PRL was measured by radioimmunoassay whereas tyrosine hydroxylase positive (TH+) neurons and PRL cells were morphometrically assessed in sections of fixed hypothalami and pituitaries, respectively. After 30 days, hypothalamic estrogen implants induced a significant increase in serum PRL, whereas TH+ neurons were not detectable in the arcuate-periventricular hypothalamic (ARC) region of estrogen-implanted rats. Removal of implants on day 30 restored TH expression in the ARC and brought serum PRL back to basal levels 30 days after estrogen withdrawal. Subcutaneous or i.m. administration of estrogen for 7 weeks induced a marked hyperprolactinemia. However, 30 weeks after estrogen withdrawal, TH neuron numbers in the ARC were back to normal and serum PRL returned to basal levels. After peripheral but not central estrogen withdrawal, pituitary weight and lactotrophic cell numbers remained slightly increased. Our data suggest that estrogen even at high doses, does not cause permanent damage to TIDA neurons.


Assuntos
Encéfalo/efeitos dos fármacos , Dopamina/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Neurônios/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Contagem de Células , Tamanho Celular/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/efeitos adversos , Estrogênios/administração & dosagem , Estrogênios/efeitos adversos , Feminino , Hiperprolactinemia/induzido quimicamente , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ovariectomia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Hipófise/citologia , Hipófise/fisiologia , Prolactina/sangue , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Ann N Y Acad Sci ; 1153: 98-106, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19236333

RESUMO

Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to the molecule. After its discovery in the early 1970s, thymulin was characterized as a thymic hormone involved in several aspects of intrathymic and extrathymic T cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, a growing core of information, to be reviewed here, points to thymulin as a hypophysotropic peptide. In recent years, interest has arisen in the potential use of thymulin as a therapeutic agent. Thymulin was shown to possess anti-inflammatory and analgesic properties in the brain. Furthermore, an adenoviral vector harboring a synthetic gene for thymulin, stereotaxically injected in the rat brain, achieved a much longer expression than the adenovirally mediated expression in the brain of other genes, thus suggesting that an anti-inflammatory activity of thymulin prevents the immune system from destroying virus-transduced brain cells. Other studies suggest that thymulin gene therapy may also be a suitable therapeutic strategy to prevent some of the endocrine and metabolic alterations that typically appear in thymus-deficient animal models. The present article briefly reviews the literature on the physiology, molecular biology, and therapeutic potential of thymulin.


Assuntos
Terapia Genética , Sistemas Neurossecretores/fisiologia , Peptídeos/genética , Peptídeos/uso terapêutico , Fator Tímico Circulante/genética , Fator Tímico Circulante/uso terapêutico , Timo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Homeostase , Humanos , Dados de Sequência Molecular , Peptídeos/química , Fator Tímico Circulante/biossíntese , Fator Tímico Circulante/química
15.
Cells Tissues Organs ; 190(1): 20-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18957836

RESUMO

Insulin-like growth factor-I (IGF-I) provides a physiologic feedback effect within the somatotropic axis. Gene therapy was implemented in young female Sprague-Dawley rats which received 2 pituitary stereotaxic injections of a control recombinant adenoviral vector expressing green fluorescent protein (RAd-GFP) or IGF-I (RAd-IGF-I). The animals were sacrificed 7 days after injection. Previously, on day -23, the experimental groups received subcutaneous implants of 17-beta estradiol. Morphometric analysis revealed that the somatotrope cells in estrogen-treated rats without stereotaxic injections showed a significant (p < 0.01) increase in the cell size compared with intact controls (59.9 +/- 1.1 vs. 42.9 +/- 1.2 microm(2)) and had a significant (p < 0.05) decrease in cell density with respect to intact animals (10.5 +/- 0.1 vs. 19.7 +/- 1.7). The treatment of pituitary adenomas with RAd-IGF-I induced a significant (p < 0.05) decrease in cell size with respect to E(2) + RAd-GFP (51.3 +/- 0.3 vs. 58.9 +/- 0.3 microm(2)) and no changes in cell density compared with RAd-GFP-injected animals (12.8 +/- 1.7 vs. 10.5 +/- 0.1). Serum growth hormone was higher (p < 0.01) in estrogen-treated animals versus controls (146.7 +/- 6 vs. 73.9 +/- 9 ng/ml). In rats carrying estrogen-induced adenomas, RAd-IGF-I injection induced a significant (p < 0.05) decrease in serum growth hormone compared to RAd-GFP-injected animals (107.5 +/- 7 vs. 142.4 +/- 9 ng/ml). IGF-I gene therapy appears to be an effective approach for the treatment of experimental somatomammotropic pituitary tumors and could be potentially useful as an adjuvant of conventional therapies.


Assuntos
Terapia Genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/uso terapêutico , Neoplasias Hipofisárias/terapia , Prolactinoma/genética , Prolactinoma/terapia , Somatotrofos/patologia , Animais , Contagem de Células , Tamanho Celular , Estrogênios/administração & dosagem , Estrogênios/farmacologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Hormônio do Crescimento/sangue , Implantes Experimentais , Neoplasias Experimentais/sangue , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Neoplasias Hipofisárias/sangue , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Prolactina/sangue , Prolactinoma/sangue , Prolactinoma/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Somatotrofos/efeitos dos fármacos
16.
Expert Rev Endocrinol Metab ; 4(4): 359-370, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20186255

RESUMO

Pituitary adenomas constitute the most frequent neuroendocrine pathology in humans. Current therapies include surgery, radiotherapy and pharmacological approaches. Although useful, none of them offers a permanent cure. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental adenomas with adenoviral vector-mediated transfer of the suicide gene for thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. Although the efficiency and safety of current viral vectors must be optimized before clinical use, they remain as highly promising therapeutic tools.

17.
Hypertens Res ; 31(7): 1465-76, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18957818

RESUMO

The aim of this work was to assess the possible correlation between oxidative damage and the development of cardiac hypertrophy in heart tissue from young (40-d-old) and older (4-, 11- and 19-month-old) spontaneously hypertensive rats (SHR) in comparison with age-matched Wistar (W) rats. To this end, levels of thiobarbituric acid reactive substances (TBARS), nitrotyrosine contents, NAD(P)H oxidase activity, superoxide production, and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were determined. Compared to age-matched normotensive rats, SHR showed a significant increase in systolic blood pressure from 40 d of age and left ventricular hypertrophy (LVH) was significantly evident from 4 months of age. W rats (11- and 19-month-old) also showed an increase in LVH with aging. TBARS and nitrotyrosine levels were similar in young rats from both strains and were significantly increased with age in both strains, with the values in SHR being significantly higher than those in age-matched W rats. NAD(P)H activity was similar in young SHR and W rats, whereas it was higher in aged SHR compared with age-matched W rats. Compared to W rats, superoxide production was higher in aged SHR, and was abolished by NAD(P)H inhibition with apocynin. CAT activity was increased in the hearts of 4-month-old SHR compared to age-matched W rats and was decreased in the hearts of the oldest SHR compared to the oldest W rats. SOD and GPx activities decreased in both rat strains with aging. Moreover, an increase in collagen deposition with aging was evident in both rat strains. Taken together, these data showed that aged SHR exhibited higher cardiac hypertrophy and oxidative damage compared to W rats, indicating that the two undesirable effects are associated. That is, oxidative stress appears to be a cause and/or consequence of hypertrophy development in this animal model.


Assuntos
Cardiomegalia/metabolismo , Estresse Oxidativo , Animais , Cardiomegalia/etiologia , Catalase/metabolismo , Colágeno/análise , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Masculino , NADPH Oxidases/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
18.
Curr Gene Ther ; 8(1): 49-53, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18336249

RESUMO

The aim of the present article is to discuss the potential of gene therapy for thymic hormones as a novel therapeutic strategy to treat dyshomeostatic conditions associated with congenital athymia or hypofunction of the endocrine thymus. Recent studies using an adenoviral vector harboring a synthetic gene for the thymic peptide thymulin are reviewed. This adenoviral vector was injected intramuscularly in thymectomized and nude mice as well as in thymectomized rats. Transduced myocytes acted as an ectopic source of thymulin thus restoring circulating thymulin levels to normal values. This restorative effect was long lasting (several months) even though an adenoviral vector was used. In the rat brain, adenovirally-mediated delivery of the synthetic gene for thymulin achieved longer expression than in the case of adenovirally-delivered reporter genes, which is consistent with the reported antiinflammatory activity of thymulin in the brain. Furthermore, neonatal thymulin gene therapy in nude female mice was able to prevent the pituitary and ovarian alterations that typically occur in this mutant after puberty. Neonatal thymulin gene therapy in nude mice was able to prevent some of the alterations in lipid metabolism that develop during adult life in congenitally athymic mice. We conclude that the availability of the above biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans.


Assuntos
Envelhecimento/fisiologia , Terapia Genética/métodos , Imunidade Inata/genética , Fator Tímico Circulante/genética , Timo/anormalidades , Animais , Sequência de Bases , Modelos Animais , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Homologia de Sequência do Ácido Nucleico , Timo/fisiologia
19.
Mol Cancer ; 7: 13, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18218140

RESUMO

BACKGROUND: The implementation of gene therapy for the treatment of pituitary tumors emerges as a promising complement to surgery and may have distinct advantages over radiotherapy for this type of tumors. Up to now, suicide gene therapy has been the main experimental approach explored to treat experimental pituitary tumors. In the present study we assessed the effectiveness of insulin-like growth factor I (IGF-I) gene therapy for the treatment of estrogen-induced prolactinomas in rats. RESULTS: Female Sprague Dawley rats were subcutaneously implanted with silastic capsules filled with 17-beta estradiol (E2) in order to induce pituitary prolactinomas. Blood samples were taken at regular intervals in order to measure serum prolactin (PRL). As expected, serum PRL increased progressively and 23 days after implanting the E2 capsules (Experimental day 0), circulating PRL had undergone a 3-4 fold increase. On Experimental day 0 part of the E2-implanted animals received a bilateral intrapituitary injection of either an adenoviral vector expressing the gene for rat IGF-I (RAd-IGFI), or a vector (RAd-GFP) expressing the gene for green fluorescent protein (GFP). Seven days post vector injection all animals were sacrificed and their pituitaries morphometrically analyzed to evaluate changes in the lactotroph population. RAd-IGFI but not RAd-GFP, induced a significant fall in serum PRL. Furthermore, RAd-IGFI but not RAd-GFP significantly reversed the increase in lactotroph size (CS) and volume density (VD) induced by E2 treatment. CONCLUSION: We conclude that IGF-I gene therapy constitutes a potentially useful intervention for the treatment of prolactinomas and that bioactive peptide gene delivery may open novel therapeutic avenues for the treatment of pituitary tumors.


Assuntos
Terapia Genética , Hiperprolactinemia/patologia , Hiperprolactinemia/terapia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/uso terapêutico , Prolactinoma/patologia , Prolactinoma/terapia , Animais , Tamanho Celular , Feminino , Proteínas de Fluorescência Verde/metabolismo , Hiperprolactinemia/genética , Lactotrofos/patologia , Prolactina/sangue , Prolactinoma/genética , Ratos , Ratos Sprague-Dawley , Timidina Quinase/metabolismo , Transgenes
20.
Am J Physiol Endocrinol Metab ; 293(1): E182-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17389714

RESUMO

Integrity of the thymus during perinatal life is necessary for a proper maturation of the pituitary-gonadal axis in mice and other mammalian species. Thus congenitally athymic (nude) female mice show significantly reduced levels of circulating gonadotropins, a fact that seems to be causally related to a number of reproductive derangements described in these mutants. Interestingly, a number of in vitro studies suggest that the thymic peptide thymulin may be involved in thymus-pituitary communication. To determine the consequences of low serum thymulin in otherwise normal animals, we induced short (8 days)- and long (33 days)-term thymulin deficiency in C57BL/6 mice by neonatally injecting (intraperitoneally) an anti-thymulin serum and assessed their circulating gonadotropin levels at puberty and thereafter. Control mice received an irrelevant antiserum. Gonadotropins were measured by radioimmunoassay and thymulin by bioassay. Both long- and short-term serum thymulin immunoneutralization resulted in a significant reduction in the serum levels of gonadotropins at 33 and 45 days of age. Subsequently, we injected (intramuscularly) an adenoviral vector harboring a synthetic DNA sequence (5'-ATGCAAGCCAAATCTCAAGGTGGATCCAACTAGTAG-3') encoding a biologically active analog of thymulin, methionine-FTS, in newborn nude mice (which are thymulin deficient) and measured circulating gonadotropin levels when the animals reached 52 days of age. It was observed that neonatal thymulin gene therapy in the athymic mice restored their serum thymulin levels and prevented the reduction in circulating gonadotropin levels that typically emerges in these mutants after puberty. Our results indicate that thymulin plays a relevant physiological role in the thymus-pituitary-gonadal axis.


Assuntos
Terapia Genética , Gonadotropinas/sangue , Fator Tímico Circulante/genética , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Dados de Sequência Molecular , Gravidez , Fator Tímico Circulante/imunologia , Fator Tímico Circulante/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...